On extended eigenvalues and extended eigenvectors of truncated shift
نویسندگان
چکیده
منابع مشابه
Description of extended eigenvalues and extended eigenvectors of integration operators on the Wiener algebra
In the present paper we consider the Volterra integration operator V on the Wiener algebra W (D) of analytic functions on the unit discD of the complex plane C. A complex number is called an extended eigenvalue of V if there exists a nonzero operator A satisfying the equation AV = V A. We prove that the set of all extended eigenvalues of V is precisely the set C\{0}, and describe in terms of Du...
متن کاملOn Extended Eigenvalues of Operators
A complex number λ is an extended eigenvalue of an operator A if there is a nonzero operator X such that AX = λXA. We characterize the the set of extended eigenvalues for operators acting on finite dimensional spaces, finite rank operators, Jordan blocks, and C0 contractions. We also describe the relationship between the extended eigenvalues of an operator A and its powers. We derive some appli...
متن کاملNotes on Eigenvalues and Eigenvectors
Exercise 4. Let λ be an eigenvalue of A and let Eλ(A) = {x ∈ C|Ax = λx} denote the set of all eigenvectors of A associated with λ (including the zero vector, which is not really considered an eigenvector). Show that this set is a (nontrivial) subspace of C. Definition 5. Given A ∈ Cm×m, the function pm(λ) = det(λI − A) is a polynomial of degree at most m. This polynomial is called the character...
متن کاملHyperinvariant subspaces and extended eigenvalues
An extended eigenvalue for an operator A is a scalar λ for which the operator equation AX = λXA has a nonzero solution. Several scenarios are investigated where the existence of non-unimodular extended eigenvalues leads to invariant or hyperinvariant subspaces. For a bounded operator A on a complex Hilbert space H, the set EE(A) of extended eigenvalues for A is defined to be the set of those co...
متن کاملOn eigenvalues and eigenvectors of subdirect sums
Some new properties of the eigenvalues of the subdirect sums are presented for the particular case of 1-subdirect sums. In particular, it is shown that if an eigenvalue λ is associated with certain blocks of matrix A or matrix B then λ is also an eigenvalue associated with the 1-subdirect sum A ⊕1 B. Some results concerning eigenvectors of the k-subdirect sum A⊕k B for an arbitrary positive int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Concrete Operators
سال: 2013
ISSN: 2299-3282
DOI: 10.2478/conop-2012-0003